
7UT612/3 用于变压器保护调试说明

1. 对于 7UT 保护来说,当采用不同的接线组别方式时其动作方程将会发生相应的变换,当知道了具体的动作方程后就可以很方便的测试保护的动作特性了。具体的矩阵方程在附件里。

下面以常见的 YD11 (无零序电流补偿) 接法为例说明。

◆ Y 侧的动作方程如下:

$$\begin{pmatrix} IA \\ IB \\ IC \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} IL1 \\ IL2 \\ IL3 \end{pmatrix}$$

解矩阵后可得:

IA=II.1

IB=IL2

IC=IL3

也就是说当在 Y 侧单独一相加电流时,只在该相产生相应大小的差流。

◆ △侧的动作方程如下:

$$\begin{pmatrix} IA \\ IB \\ IC \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} -(1-\sqrt{3}) & -1 & -(1+\sqrt{3}) \\ -(1+\sqrt{3}) & -(1-\sqrt{3}) & -1 \\ -1 & -(1+\sqrt{3}) & -(1-\sqrt{3}) \end{pmatrix} \cdot \begin{pmatrix} IL1 \\ IL2 \\ IL3 \end{pmatrix}$$

解矩阵后可得:

IA=
$$(\sqrt{3}-1)/3 *IL1 - 1/3 *IL2 - (1+\sqrt{3})/3 *IL3$$

IB= $-(1+\sqrt{3})/3 *IL1 + (\sqrt{3}-1)/3 *IL2 - 1/3 *IL3$
IC= $-1/3 *IL1 - (1+\sqrt{3})/3 *IL2 + (\sqrt{3}-1)/3 *IL3$

从上面的三个公式可以看出当在 \triangle 侧 A 相单独加电流时,会同时在 B 相和 C 相产生差流,三相产生的差流分别为:

IA=
$$(\sqrt{3}-1)/3$$
 *IL1= 0.244 *IL1 (公式 1)


IB=
$$-(1+\sqrt{3})/3$$
 *IL1= -0.911 *IL1 (公式 2)

其中的负号表示电流方向相反。

从公式(1,2,3)可以看出,当在△侧 A 相单独加一个测试电流时,对于保护装置 7UT613 来说,B 相产生的差流最大,如果要单独测试 A 相的差动跳闸,要注意的是 B 相的差动先动作,如果没有设置相应的 ABC 各相动作指示灯时很容易引起客户误会。因此做试验时要求客户使用 6 相电流输出的测试仪器,这样就可以避免这类关系换算。

2,下面是一台 7UT613 保护的参数设定:

装置的设定参数如下:变压器为两圈变,保护装置使用三侧 CT,其中△侧有两路分支,分别安装独立的 CT.保护配置如下图:

变压器两侧容量 Sn=50MVA, 接线方式 YD11, 电压等级 110KV/10KV

Y 侧:CT: 500/5A , Un=110KV, 计算出额定的二次电流 In=2.6244A

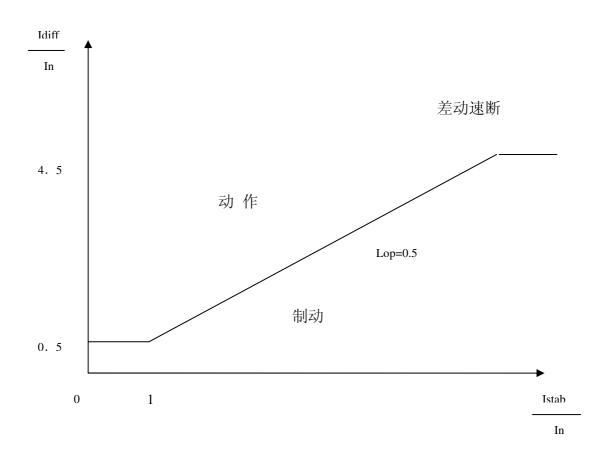
△侧 CT: 5000/5A, Un=10KV, 计算出额定的二次电流 In=2.8868A

二次额定电流计算方法:

In=Sn/(1.732*Un) * (In-sen/In-pri) (其中 In-sec 为 CT 的二次额定值,In-pri 为 CT 的额定一次值)

保护配置如下图:

·Numb :置(S)	ers CT-Assign VT-Assign Power System Transf. NotAssign	MeasLoc Funct. CT's VT's CB
编号	设置	数值
0311	Rated Primary Voltage Side 1	/ 110.0 k\
0312	Rated Apparent Power of Transf, Side 1	∫ 50.00 MVA
0313	Starpoint of Side 1 is	Isolate
0314	Transf. Winding Connection Side 1	Y (Wye
0321	Rated Primary Voltage Side 2	10.0 k ¹
0322	Rated Apparent Power of Transf, Side 2	50.00 MV/
0323	Starpoint of Side 2 is	Isolate
0324	Transf. Winding Connection Side 2	D (Delta
0325	Vector Group Numeral of Side 2	1


保护的差动定值:

启动值: 87-1: Idiff>=0.5In, 差动速断: 87-2: Idiff>>=4.5 In.

比率制动设一段斜率: K=0.5. 保护配置如下图:

3, 现场可能的测试要求及相应的测试方法及结果。

<一>测试保护的采样精度:

◆在 Y 侧 (高压侧) 在 A 相单独加 1A 电流,观察保护的采样值是否正确:保护显示的差动电流和制动电流是否正确。

A 差动计算值: Idiff=1A/In=1/2.6244=0.381, 装置实际显示值: Diff= 0.38 B 差动计算值: Idiff=1A/In=1/2.6244=0.381, 装置实际显示值: Diff= 0.38 C 差动计算值: Idiff=1A/In=1/2.6244=0.381, 装置实际显示值: Diff= 0.38

◆◆在△侧(低压侧) A 相单独加 1A 电流,观察保护的采样值是否正确:保护显示的差动电流和制动电流是否正确。这时装置 A,B,C 相均应该有相应的差动和制动电流。计算公式可由解出的矩阵公式得出如下:

DiffA= $(\sqrt{3}-1)/3 *IL1/In = 0.244 *IL1/In$

DiffB= $-(1+\sqrt{3})/3 *IL1/In=-0.911 *IL1/In$

DiffC= - 1/3 *IL1/In=-0.333 *IL1/In

由上面公式可以计算出相应的差动值,其中的 In 为△侧的二次额定电流。负号仅仅表示电流方向。

A 相差动计算值:	装置实际显示值
Diff=0.244*1A/In=0.244*1A/2.8868A=0.085	Diff=0.09
B 相差动计算值:	
Diff=0.911*1A/In=0.911*1A/2.8868A=0.3156	Diff=0.32
C 相差动计算值:	
Diff=0.333*1A/In=0.333*1A/2.8868A=0.1154	Diff=0.12

在△侧(低压侧) B相单独加1A电流,测试结果如下:

A 相差动计算值:	装置实际显示值
Diff=0.333*1A/In=0.333*1A/2.8868A=0.1154	Diff=0.12
B 相差动计算值:	
Diff=0.244*1A/In=0.244*1A/2.8868A=0.085	Diff=0.09
C 相差动计算值:	
Diff=0.911*1A/In=0.911*1A/2.8868A=0.3156	Diff=0.32

在<u>△侧(低压侧)</u> C 相单独加 1A 电流,测试结果如下

A 相差动计算值: 装置实际显示值
Diff=0.911*1A/In=0.911*1A/2.8868A=0.3156
B 相差动计算值:
Diff=0.333*1A/In=0.333*1A/2.8868A=0.1154
C 相差动计算值:
Diff=0.244*1A/In=0.244*1A/2.8868A=0.085
Diff= 0.09

<二>测试保护的高低压电流平衡:

◆为了方便测试,必须采用 6 相电流输出测试仪。测试方法如下: 在 Y 侧(高压侧)三相加一倍的额定的电流,在△侧(低压侧)三相加一倍的 额定的电流,为了保持两侧的电流大小相等,方向相反,(变压器接线方式 YD11) 测试电流参数如下:

Y侧(高压侧)	△侧	(低压侧)
---------	----	-------

电流	角度	电流	角度
A 相 1In=2.6244A	0'	2.8868A	210'
B 相 1In=2.6244A	-120'	2.8868A	90',
C 相 1In=2.6244A	120'	2.8868A	330'

测试结果如下:

DIII	Rest
0	2.01
0	2.00
0	2.00
	0

D:cc

<三>测试差动保护的启动段 Idiff>:

启动段设定值: 87-1: 0.5In

◆在 Y 侧 (高压侧), A 相单独加测试电流,

计算动作值为: Idiff>=0.5In=0.5*2.6244A=1.3122A.

测试动作值为: 1.30A.

◆◆在△侧(低压侧), A 相单独加测试电流时,注意是 B 相的差动先动作,所以在测试时要注意。

由矩阵可以得出:

DiffA= $(\sqrt{3}-1)/3 *IL1/In = 0.244 *IL1/In$

DiffB= $-(1+\sqrt{3})/3 *IL1/In=-0.911 *IL1/In$

DiffC= - 1/3 *IL1/In=-0.333 *IL1/In

其中 IL1 为测试电流 从上面的公式里可以求出要加的测试动作电流为 IL1=IB *In/0.911=0.5*2.8868/0.911=1.5844A 实际测试动作值: 1.57A

◆◆◆在△侧(低压侧),三相同时加电流就比较简单 (注意三相加的电流大小相等,角度依次为 A 相:0' B 相:-120' C 相:120') 计算动作值为: Idiff>=0.5In=0.5*2.8868A=1.4434A. 测试动作值为: 1.44A.

<四>测试保护的差动速断 87-2 Idiff>>:

保护定值设定: 87-2 Idiff>>=4.5In

◆在 Y 侧 (高压侧), A 相单独加测试电流,

计算动作值为: Idiff>>=4.5In=4.5*2.6244A=11.809A

测试动作值为: 11.8A.

◆◆在△侧(低压侧),三相同时加电流(注意三相加的电流大小相等,角度依次为 A 相:0' B 相:-120' C 相:120') (测试时用的 4I 做定值,因为测试仪器的单相输入容量为 12.5A)

计算动作值为: Idiff>>=4.0In=4.0*2.8868A=11.547A

测试动作值为: 11.53 A.

◆ ◆ 本 △ (低压侧),加单相电流时,要注意 A 相单独加测试电流时,注意是 B 相的差动速断先动作,计算动作电流需要乘上一个系数 1.098(1/0.991) 因为:

IB= —
$$(1+\sqrt{3})/3$$
 *IL1/In=—0.911 *IL1/In (公式二)

从上面的公式可以看出,在 A 相加测试电流时,B 相差动电流最大。所以 B 相 先动作。动作值如下:

IL1=IB *In/0.911=4.5*2.8868/0.911=14.2597A

实际测试动作电流: 14.25A

<五>测试保护的比率制动

◆ 拐点测试: (1, 0.5) 制动为 1In 时, 差动为 0.5In 时, 差动保护动作。

由方程:

Irest=|I1|+|I2|

Idiff=|I1+I2|

I1 为高压侧电流, I2 为低压侧电流。

可以解出:

I1=0. 25*In=0. 25*2. 6244=0. 6561A

I2=0.75*In =0.75*2.8868=2.1651A

或者

I1=0.75*In =0.75*2.6244=1.9683A

I2=0.25*In =0.25*2.8868=0.7217A

测试 1:

理论计算值:

V 4	(,	1-1-1	m	

△侧(低压侧)

电流	角度	电流	角度
A 相 0.6561A	0'	2. 1651 A	210'
B 相 0.6561A	-120'	2. 1651A	90 '
C 相 0.6561A	120'	2. 1651 A	330'

测试方法:

保持 Y 侧 (高压侧),I1=0.6561 不变, \triangle 侧 (低压侧) 电流三相同时从 1.8A 慢 慢增加,直到保护动作,记录动作值:2.16A.

保持 \triangle 侧(低压侧),I2=2.1651 不变,Y 侧(高压侧)电流三相同时从 0.8A 慢慢减小,直到保护动作,记录动作值:0.66A. 与计算结果相同。

测试 2:

理论计算值:

Y侧(高压侧)

△侧(低压侧)

电流	角度	电流	角度
A 相 1.9683A	0'	0. 7217A	210'
B 相 1.9683A	-120'	0. 7217A	90 '
C 相 1.9683 A	120'	0.7217A	330'

保持 Y 侧 (高压侧),I1=1.9683 不变, \triangle 侧 (低压侧) 电流三相同时从 0.8A 慢 慢往减小,直到保护动作,记录动作值:0.725A.

保持 Δ 侧(低压侧),I2=0.7217 不变,Y 侧(高压侧)电流三相同时从 1.8 慢慢增加,直到保护动作,记录动作值: 1.962A. 与计算结果相同。

测试比率制动的斜率:

在斜线上抽几个点作为测试点:

测试 1:

保持 Y 侧(高压侧),I1=0.5In 不变, \triangle 侧(低压侧)电流三相同时从 I2=0.5In 慢慢增加,直到保护动作,

Irest=|I1|+|I2|

Idiff=|I1+I2|

由上面公式理论计算动作值为: I2=1.5In=1.5*2.8868=4.33A 实际测试动作值:

Y侧(高压侧)

△侧(低压侧动作值)

电流	角度	电流	角度
A 相 0.5In=1.312A	0'	4. 34A	210'
B 相 0.5In=1.312A	-120'	4.34A	90 '
C 相 0.5In=1.312 A	120'	4.34A	330'

斜率

K = (Idiff/In) / (Irest/In) = (4.34/2.8868-0.5) / (4.34/2.8868+0.5) = 0.5

测试 2:

保持 Y 侧 (高压侧),I1=1In 不变, \triangle 侧 (低压侧) 电流三相同时从 I2=1In 慢增加,直到保护动作,

Irest=|I1|+|I2|

Idiff=|I1+I2|

由上面公式理论计算动作值为: I2=3In=3*2.8868=8.66A

实际测试动作值:

Y侧(高压侧)

△侧(低压侧增加)

电流	角度	电流	角度
A 相 1In=2.624A	0'	8. 60A	210'
B 相 1In=2.624A	-120'	8. 58A	90 '
C 相 1In=2.624A	120'	8.58A	330'

与计算结果相同。

斜率 K=(Idiff/In)/(Irest/In)=(8.6/2.8868-1)/(8.6/2.8868+1)=0.497

测试 3:

保持 Y 侧 (高压侧),I1=1In 不变, \triangle 侧 (低压侧) 电流三相同时从 I2=1In 慢慢减小,直到保护动作,

Irest=|I1|+|I2|

Idiff=|I1+I2|

由上面公式理论计算动作值为: I2=1/3In=1/3*2.8868=0.9623 A

实际测试动作值:

Y侧(高压侧)

△侧(低压侧减小)

电流	角度	电流	角度
A 相 1In=2.624A	0'	0. 97A	210'
B 相 1In=2.624A	-120'	0.97A	90 '
C 相 1In=2.624A	120'	0.97A	330'

斜率

K = (Idiff/In)/(Irest/In) = (1-0.97/2.8868)/(1+0.97/2.8868) = 0.496

测试 4:

保持 Y 侧(高压侧),I1=2In 不变, \triangle 侧(低压侧)电流三相同时从 I2=2In 慢慢减小,直到保护动作,

Irest=|I1|+|I2|

Idiff=|I1+I2|

由上面公式理论计算动作值为: I2=2/3In=2/3*2.8868=1.925 A 实际测试动作值:

Y侧(高压侧)

△侧(低压侧减小)

电流	角度	电流	角度
A 相 2In=5. 248A	0'	1. 944A	210'
B 相 2In=5.248A	-120'	1.944A	90 '
C 相 2In=5.248A	120'	1.944A	330'

斜率

K = (Idiff/In)/(Irest/In) = (2-1.944/2.8868)/(2+1.944/2.8868) = 0.496

测试 5:

保持 Δ 侧(低压侧),I2=2In 不变,Y侧(高压侧)电流三相同时从 I1=2In 慢慢减小,直到保护动作,

Irest=|I1|+|I2|

Idiff=|I1+I2|

由上面公式理论计算动作值为: I1=2/3In=2/3*2.624=1.75 A

实际测试动作值:

Y侧(高压侧减小)

△侧(低压侧)

电流	角度	电流	角度
A 相 1.76A	0'	2In= 5. 773A	210'
B 相 1.76A	-120'	2In = 5.773A	90 '
C 相 1.76A	120'	2In=5. 773A	330'

斜率

K=(Idiff/In)/(Irest/In)=(2-1.76/2.6244)/(2+1.76/2.6244)=0.497